Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-{[2-(Diphenvlthiophosphoryl)ferrocenyl]methyl}dimethylammonium diphenyldithiophosphinate

Nardjes Mouas,^{a,b} Hocine Merazig,^a Jean-Claude Daran^b* and Eric Manoury^b

^aUnité de Recherche de Chimie Moléculaire et Structurale CHEMS, Université Mentouri, Constantine, Algeria, and ^bCNRS, LCC, 205 route de Narbonne, BP 44099, F-31077, Toulouse cedex 4, France Correspondence e-mail: daran@lcc-toulouse.fr

Received 27 February 2012; accepted 29 February 2012

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.079; data-to-parameter ratio = 18.7.

2-(Diphenylthiophosphino)dimethylaminomethylferrocene is a key intermediate in the synthesis of various ferrocenyl ligands. During one such synthesis, the title compound, $[Fe(C_5H_5)(C_{20}H_{22}NPS)](C_{12}H_{10}PS_2)$, was isolated as a byproduct. It is built up by association of (2-(diphenylphosphino)ferrocenyl)methyl)dimethylammonium cations and diphenylphosphino dithioate anions. N-H···S, C- $H \cdots S$ and $C - H \cdots \pi$ interactions link the anions and cations. Each anion-cation pair is linked two by two through C- $H \cdots \pi$ interactions, forming pseudo dimers.

Related literature

For the synthesis of various ferrocenyl ligands, see: Audin et al. (2010); Le Roux et al. (2007); Routaboul et al. (2005, 2007). For related structures containing the $C_{12}H_{10}PS_2$ anion, see: Alison et al. (1971); Fackler et al. (1982); Silvestru et al. (1995). For related ferrocenyl ammonium structures, see: Štěpnička & Císařová, (2003). For a related ferrocenylamine structure, see: Mateus et al. (2006).

Experimental

Crystal data

$[Fe(C_5H_5)(C_{20}H_{22}NPS)]$ -	$\beta = 112.557 \ (2)^{\circ}$
$(C_{12}H_{10}PS_2)$	$V = 3419.31 (12) \text{ Å}^3$
$M_r = 709.65$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.7800 (3) Å	$\mu = 0.75 \text{ mm}^{-1}$
b = 18.3770 (3) Å	T = 180 K
c = 13.6318 (3) Å	$0.38 \times 0.13 \times 0.06$ r

Data collection

```
Agilent Xcalibur Eos Gemini ultra
  diffractometer
Absorption correction: multi-scan
  (SCALE3 ABSPACK in CrysAlis
  PRO: Agilent, 2011)
  T_{\min} = 0.815, \ T_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$
$wR(F^2) = 0.079$
S = 1.05
7498 reflections
402 parameters

 $K\alpha$ radiation 0.75 mm^{-1} 180 K \times 0.13 \times 0.06 mm

37299 measured reflections 7498 independent reflections 6435 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

H atoms treated by a mixture	of
independent and constraine	d
refinement	
$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C111-C116 and C221-C226 phenyl rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots S21 \\ C21 - H21 B \cdots S1 \end{array}$	0.85 (2)	2.34 (2)	3.1516 (15)	160.3 (19)
	0.99	2.87	3.664 (2)	137
$C22-H22C\cdots Cg2^{i}$ $C23-H23A\cdots Cg1$	0.99	2.75	3.621 (3)	149
	0.99	2.75	3.483 (2)	132

Symmetry code: (i) -x + 2, -y + 1, -z + 2.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The CNRS is acknowledged for financial support and NM acknowledges the Department of Chemistry of the University of Mentouri for funding her stay in the LCC.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2031).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Alison, J. M. C., Stephenson, T. A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690-3696.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chimie, 13, 890-899.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

- Fackler, J. P. Jr, Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397-2403.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064-1073.
- Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.
- Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.
- Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silvestru, A., Haiduc, I., Toscano, R. A. & Breunig, H. J. (1995). Polyhedron, 14, 2047-2033.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Štěpnička, P. & Císařová, I. (2003). Organometallics, 22, 1728-1740.

supplementary materials

Acta Cryst. (2012). E68, m381-m382 [doi:10.1107/S1600536812009129]

rac-{[2-(Diphenylthiophosphoryl)ferrocenyl]methyl}dimethylammonium diphenyldithiophosphinate

Nardjes Mouas, Hocine Merazig, Jean-Claude Daran and Eric Manoury

Comment

2-(diphenylthiophosphino)dimethylaminomethylferrocene is a key intermediate in the synthesis of various ferrocenyl ligands (Routaboul *et al.*, 2005; Mateus *et al.*, 2006; Routaboul *et al.*, 2007; Le Roux *et al.*, 2007; Audin *et al.*, 2010;), in our laboratories. The last step of the synthesis of 2-(diphenylthiophosphino)dimethylaminomethylferrocene is a sulfurization of 2-(diphenylphosphino)dimethylaminomethylferrocene without any purification with an excess of elemental sulfur (Mateus *et al.*, 2006). During this synthesis, small amounts of dimethyl-(2-(diphenylthiophosphino)ferrocenyl)methylammonium diphenylphosphinodithioato can be observed in the crude materials. We were able to obtain pure salt fractions by flash chromatography on silicagel. Monocrystals suitable for X-ray diffraction analysis could be grown from a dichloromethane solution by slow diffusion of hexane.

The asymmetric unit of the title compound contains a (2-(diphenylphosphino)ferrocenyl)methyl)dimethylammonium cation and a diphenylphosphino dithioate anion which are linked through N—H…S hydrogen bond (Fig. 1; Table 1). Besides this rather strong hydrogen bond, there are weaker C—H…S and C—H… π hydrogen interactions. The anion-cation couple are linked two by two through intermolecular C—H… π interactions (Fig. 2; Table 1).

In the cation, the two Cp rings have roughly a staggered conformation with a twist angle of 20.6 (2)° and they are slightly bent with respect to each other making a dihedral angle of 4.72 (12)°. As observed in the related 2-(diphenylthiophosphino)-dimethylaminomethylferrocene (Mateus *et al.*, 2006), the S atom is displaced *undo* towards the Fe atom by 1.149 (4) Å from the Cp ring. The C2—C21—N1 plane is making a dihedral angle of 58.9 (1)° with the corresponding Cp ring whereas in the above ferrocenylamine (Mateus *et al.*, 2006) the corresponding angle was roughly 90°. The C21—N1 distance of 1.502 (2) Å is similar to the 1.526 (2) Å observed in the reported ferrocenylammonium cation, $[FeCp_2PPh_2(CH_2NMe_2CH_2Ph)]^+$ (Štěpnička & Císařová, 2003).

The geometry of the anion fully agrees with related structures containing the same anion (Alison *et al.*, 1971; Fackler *et al.*, 1982; Silvestru *et al.*, 1995).

Experimental

In a schlenk tube under argon 4gr of crude (2-diphenylphosphino) dimethylaminomethyl ferrocene (0,47 mmol) were dissolved in 100 ml of dichloromethane, 1,7gr of sulfur (53 mmol) were then added and the solution was heated to reflux for 2 h. The crude product was purified and crystallized at RT. Several days later, orange crystals suitable for X-ray analyses, were obtained.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 0.95 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(C_{methylene}, C_{aromatic})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. H atom attached

to nitrogen was freely refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atom is represented as small sphere of arbitrary radii. Hydrogen bond is shown as dashed lines. H atoms not involved in hydrogen bondings within the Figure have been omitted for clarity.

Figure 2

View showing the formation of pseudo dimer resulting from C—H $\cdots\pi$ interaction. H atoms are represented as small sphere of arbitrary radii and the H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [*Cg*1 and *Cg*2 are respectively the centroids of the C111 to C116 and C221 to C226 phenyl ring]. [Symmetry code: (i) -x + 2, -y + 1, -z + 2]

rac-{[2-(Diphenylthiophosphoryl)ferrocenyl]methyl}dimethylammonium diphenyldithiophosphinate

Crystal data	
$[Fe(C_{5}H_{5})(C_{20}H_{22}NPS)](C_{12}H_{10}PS_{2})$ $M_{r} = 709.65$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 14.7800 (3) Å b = 18.3770 (3) Å c = 13.6318 (3) Å $\beta = 112.557$ (2)° V = 3419.31 (12) Å ³ Z = 4	F(000) = 1480 $D_x = 1.379 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11690 reflections $\theta = 3.0-29.1^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 180 K Box, brown $0.38 \times 0.13 \times 0.06 \text{ mm}$
Data collection	
Agilent Xcalibur Eos Gemini ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1978 pixels mm ⁻¹	ω scans Absorption correction: multi-scan (SCALE3 ABSPACK in <i>CrysAlis PRO</i> ; Agilent, 2011) $T_{min} = 0.815, T_{max} = 1.000$

37299 measured reflections	$\theta_{\rm max} = 27.1^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
7498 independent reflections	$h = -18 \rightarrow 18$
6435 reflections with $I > 2\sigma(I)$	$k = -23 \rightarrow 23$
$R_{\rm int}=0.032$	$l = -17 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
7498 reflections	and constrained refinement
402 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0316P)^2 + 2.1534P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.892126 (18)	0.295821 (13)	0.56329 (2)	0.02385 (7)	
S1	0.62046 (3)	0.37182 (3)	0.53349 (4)	0.03057 (11)	
P1	0.69099 (3)	0.40945 (2)	0.44871 (3)	0.02035 (10)	
N1	0.92524 (11)	0.49481 (8)	0.74750 (11)	0.0221 (3)	
H1	0.9858 (16)	0.4861 (11)	0.7672 (16)	0.027*	
C1	0.81988 (12)	0.38914 (9)	0.49855 (13)	0.0199 (3)	
C2	0.89066 (12)	0.40119 (9)	0.60503 (13)	0.0203 (3)	
C3	0.98477 (12)	0.38249 (10)	0.60566 (14)	0.0251 (4)	
Н3	1.0451	0.3854	0.6653	0.030*	
C4	0.97303 (13)	0.35884 (10)	0.50256 (15)	0.0278 (4)	
H4	1.0241	0.3430	0.4815	0.033*	
C5	0.87217 (12)	0.36281 (10)	0.43610 (14)	0.0251 (4)	
H5	0.8441	0.3502	0.3630	0.030*	
C6	0.83827 (17)	0.23364 (11)	0.65368 (19)	0.0417 (5)	
H6	0.8017	0.2508	0.6931	0.050*	
C7	0.79979 (18)	0.20995 (12)	0.5482 (2)	0.0491 (6)	
H7	0.7323	0.2083	0.5030	0.059*	
C8	0.8793 (2)	0.18870 (12)	0.5202 (2)	0.0552 (7)	
H8	0.8744	0.1700	0.4534	0.066*	
C9	0.96609 (18)	0.20020 (12)	0.6086 (2)	0.0491 (6)	
H9	1.0306	0.1911	0.6124	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.94077 (17)	0.22754 (12)	0.69090 (19)	0.0445 (5)
H10	0.9855	0.2399	0.7602	0.053*
C21	0.87113 (13)	0.42619 (9)	0.69984 (13)	0.0233 (4)
H21A	0.8908	0.3873	0.7543	0.028*
H21B	0.7999	0.4345	0.6784	0.028*
C22	0.90524 (15)	0.51676 (12)	0.84249 (15)	0.0342 (4)
H22A	0.9459	0.5588	0.8764	0.051*
H22B	0.9207	0.4762	0.8929	0.051*
H22C	0.8359	0.5297	0.8206	0.051*
C23	0.90543 (15)	0.55545 (10)	0.67055 (15)	0.0333 (4)
H23A	0.8359	0.5685	0.6448	0.050*
H23B	0.9219	0.5403	0.6105	0.050*
H23C	0.9454	0.5976	0.7054	0.050*
C111	0.69061 (12)	0.50804 (9)	0.44182 (12)	0.0207 (3)
C112	0.63090 (13)	0.54821 (10)	0.48002 (14)	0.0269 (4)
H112	0.5868	0.5238	0.5045	0.032*
C113	0.63565 (14)	0.62385 (11)	0.48240 (15)	0.0330 (4)
H113	0.5949	0.6510	0.5084	0.040*
C114	0.69980 (15)	0.65936 (11)	0.44694 (15)	0.0336 (4)
H114	0.7040	0.7110	0.4500	0.040*
C115	0.75816 (13)	0.61995 (10)	0.40692 (14)	0.0288 (4)
H115	0.8008	0.6447	0.3809	0.035*
C116	0.75428 (12)	0.54460 (10)	0.40491 (13)	0.0243 (4)
H116	0.7950	0.5177	0.3784	0.029*
C121	0.64309 (12)	0.37339 (10)	0.31452 (13)	0.0240 (4)
C122	0.63419 (15)	0.41465 (12)	0.22647 (15)	0.0356 (5)
H122	0.6536	0.4643	0.2346	0.043*
C123	0.59665 (17)	0.38328 (13)	0.12585 (16)	0.0437 (5)
H123	0.5905	0.4117	0.0654	0.052*
C124	0.56839 (15)	0.31161 (13)	0.11324 (16)	0.0390 (5)
H124	0.5427	0.2907	0.0443	0.047*
C125	0.57726 (16)	0.27025 (12)	0.20011 (16)	0.0410 (5)
H125	0.5582	0.2205	0.1914	0.049*
C126	0.61405 (15)	0.30098 (11)	0.30073 (15)	0.0350 (4)
H126	0.6194	0.2723	0.3607	0.042*
P2	1.19253 (3)	0.42161 (3)	0.91598 (3)	0.02193 (10)
S21	1.15395 (3)	0.50508 (3)	0.81403 (4)	0.02754 (10)
S22	1.08593 (3)	0.36503 (3)	0.93493 (4)	0.03142 (11)
C211	1.26918 (13)	0.36027 (10)	0.87503 (13)	0.0263 (4)
C212	1.35891 (14)	0.38428 (12)	0.87664 (15)	0.0333 (4)
H212	1.3819	0.4316	0.9022	0.040*
C213	1.41491 (15)	0.33888 (14)	0.84076 (16)	0.0422 (5)
H213	1.4762	0.3553	0.8417	0.051*
C214	1.38169 (17)	0.26997 (13)	0.80366 (17)	0.0452 (6)
H214	1.4204	0.2390	0.7795	0.054*
C215	1.29285 (18)	0.24609 (12)	0.80160 (18)	0.0445 (5)
H215	1.2699	0.1988	0.7755	0.053*
C216	1.23679 (16)	0.29114 (11)	0.83768 (16)	0.0346 (4)
H216	1.1757	0.2744	0.8367	0.042*

C221	1.27607 (12)	0.45558 (10)	1.04489 (13)	0.0227 (3)
C222	1.32713 (14)	0.40705 (11)	1.12579 (15)	0.0310 (4)
H222	1.3217	0.3562	1.1124	0.037*
C223	1.38586 (15)	0.43272 (12)	1.22579 (15)	0.0369 (5)
H223	1.4207	0.3994	1.2806	0.044*
C224	1.39368 (15)	0.50654 (13)	1.24572 (16)	0.0392 (5)
H224	1.4336	0.5240	1.3143	0.047*
C225	1.34355 (16)	0.55488 (12)	1.16604 (17)	0.0411 (5)
H225	1.3486	0.6057	1.1800	0.049*
C226	1.28564 (14)	0.52961 (11)	1.06545 (15)	0.0324 (4)
H226	1.2524	0.5632	1.0105	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02534 (13)	0.01906 (13)	0.02753 (14)	0.00148 (10)	0.01055 (10)	-0.00295 (10)
S1	0.0301 (2)	0.0363 (3)	0.0316 (2)	-0.00764 (19)	0.0189 (2)	-0.0016 (2)
P1	0.0183 (2)	0.0243 (2)	0.0188 (2)	-0.00269 (16)	0.00753 (16)	-0.00222 (17)
N1	0.0195 (7)	0.0237 (8)	0.0208 (7)	0.0004 (6)	0.0052 (6)	-0.0052 (6)
C1	0.0196 (8)	0.0202 (8)	0.0193 (8)	-0.0019 (6)	0.0066 (6)	-0.0009 (6)
C2	0.0205 (8)	0.0175 (8)	0.0216 (8)	-0.0003 (6)	0.0065 (6)	-0.0012 (6)
C3	0.0207 (8)	0.0263 (9)	0.0261 (9)	-0.0017 (7)	0.0065 (7)	-0.0037 (7)
C4	0.0232 (9)	0.0320 (10)	0.0320 (9)	-0.0003 (7)	0.0147 (7)	-0.0034 (8)
C5	0.0242 (8)	0.0298 (10)	0.0228 (8)	-0.0024 (7)	0.0105 (7)	-0.0039 (7)
C6	0.0528 (13)	0.0252 (10)	0.0573 (14)	0.0024 (9)	0.0323 (11)	0.0078 (10)
C7	0.0445 (13)	0.0244 (11)	0.0664 (16)	-0.0087 (9)	0.0081 (11)	0.0080 (10)
C8	0.095 (2)	0.0198 (11)	0.0596 (15)	-0.0031 (11)	0.0390 (15)	-0.0102 (10)
C9	0.0495 (13)	0.0270 (11)	0.0766 (17)	0.0154 (10)	0.0308 (13)	0.0101 (11)
C10	0.0504 (13)	0.0305 (11)	0.0454 (13)	0.0038 (10)	0.0104 (10)	0.0131 (10)
C21	0.0243 (8)	0.0238 (9)	0.0216 (8)	-0.0033 (7)	0.0086 (7)	-0.0035 (7)
C22	0.0364 (10)	0.0397 (12)	0.0281 (10)	0.0009 (9)	0.0141 (8)	-0.0110 (8)
C23	0.0406 (11)	0.0225 (9)	0.0299 (10)	-0.0012 (8)	0.0059 (8)	-0.0013 (8)
C111	0.0172 (7)	0.0249 (9)	0.0168 (8)	-0.0005 (6)	0.0028 (6)	-0.0013 (6)
C112	0.0204 (8)	0.0344 (10)	0.0260 (9)	0.0007 (7)	0.0089 (7)	-0.0031 (8)
C113	0.0310 (10)	0.0329 (11)	0.0337 (10)	0.0072 (8)	0.0110 (8)	-0.0047 (8)
C114	0.0400 (11)	0.0246 (10)	0.0298 (10)	0.0038 (8)	0.0063 (8)	0.0006 (8)
C115	0.0294 (9)	0.0301 (10)	0.0239 (9)	-0.0017 (8)	0.0070 (7)	0.0051 (8)
C116	0.0225 (8)	0.0294 (10)	0.0198 (8)	0.0017 (7)	0.0069 (7)	0.0016 (7)
C121	0.0175 (8)	0.0314 (10)	0.0222 (8)	-0.0013 (7)	0.0066 (7)	-0.0038 (7)
C122	0.0423 (11)	0.0375 (11)	0.0255 (9)	-0.0113 (9)	0.0113 (8)	-0.0036 (8)
C123	0.0531 (13)	0.0522 (14)	0.0232 (10)	-0.0094 (11)	0.0116 (9)	-0.0021 (9)
C124	0.0370 (11)	0.0500 (13)	0.0253 (10)	-0.0004 (9)	0.0067 (8)	-0.0122 (9)
C125	0.0469 (12)	0.0334 (11)	0.0346 (11)	-0.0028 (9)	0.0065 (9)	-0.0112 (9)
C126	0.0419 (11)	0.0319 (11)	0.0253 (9)	-0.0036 (9)	0.0062 (8)	-0.0035 (8)
P2	0.0210 (2)	0.0259 (2)	0.0184 (2)	0.00091 (17)	0.00710 (17)	-0.00071 (17)
S21	0.0231 (2)	0.0321 (2)	0.0252 (2)	0.00201 (17)	0.00693 (17)	0.00576 (18)
S22	0.0290 (2)	0.0373 (3)	0.0304 (2)	-0.00756 (19)	0.01418 (19)	-0.0032 (2)
C211	0.0293 (9)	0.0309 (10)	0.0186 (8)	0.0077 (7)	0.0092 (7)	0.0034 (7)
C212	0.0287 (9)	0.0449 (12)	0.0258 (9)	0.0048 (8)	0.0099 (8)	-0.0001 (8)
C213	0.0302 (10)	0.0665 (16)	0.0306 (10)	0.0127 (10)	0.0125 (8)	0.0051 (10)

supplementary materials

C216	0.0433 (11)	0.0297 (10)	0.0348 (10)	0.0054 (8)	0.0194 (9)	0.0023 (8)
C221	0.0208 (8)	0.0279 (9)	0.0208 (8)	0.0004 (7)	0.0094 (7)	-0.0005 (7)
C222	0.0329 (10)	0.0311 (10)	0.0261 (9)	0.0041 (8)	0.0083 (8)	0.0011 (8)
C223	0.0311 (10)	0.0492 (13)	0.0233 (9)	0.0060 (9)	0.0025 (8)	0.0026 (9)
C224	0.0309 (10)	0.0545 (14)	0.0273 (10)	-0.0090 (9)	0.0056 (8)	-0.0116 (9)
C225	0.0453 (12)	0.0336 (11)	0.0393 (12)	-0.0096 (9)	0.0105 (10)	-0.0101 (9)
C226	0.0347 (10)	0.0292 (10)	0.0297 (10)	-0.0028 (8)	0.0083 (8)	-0.0005 (8)

Geometric parameters (Å, °)

Fe1—C2	2.0208 (17)	C112—C113	1.391 (3)
Fe1—C1	2.0340 (17)	C112—H112	0.9500
Fe1—C3	2.0344 (18)	C113—C114	1.382 (3)
Fe1—C9	2.036 (2)	С113—Н113	0.9500
Fe1—C10	2.039 (2)	C114—C115	1.388 (3)
Fel—C8	2.042 (2)	C114—H114	0.9500
Fel—C7	2.044 (2)	C115—C116	1.386 (3)
Fel—C6	2.052 (2)	C115—H115	0.9500
Fe1—C5	2.0533 (18)	C116—H116	0.9500
Fe1—C4	2.0532 (18)	C121—C122	1.383 (3)
S1—P1	1.9557 (6)	C121—C126	1.389 (3)
P1—C1	1.7992 (17)	C122—C123	1.392 (3)
P1-C111	1.8141 (18)	C122—H122	0.9500
P1-C121	1.8146 (17)	C123—C124	1.372 (3)
N1—C23	1.481 (2)	C123—H123	0.9500
N1-C22	1.490 (2)	C124—C125	1.370 (3)
N1-C21	1.501 (2)	C124—H124	0.9500
N1—H1	0.85 (2)	C125—C126	1.387 (3)
C1—C5	1.436 (2)	C125—H125	0.9500
C1—C2	1.444 (2)	C126—H126	0.9500
C2—C3	1.430 (2)	P2—C221	1.8270 (17)
C2—C21	1.500 (2)	P2—C211	1.8305 (18)
C3—C4	1.417 (2)	P2—S22	1.9856 (6)
С3—Н3	0.9500	P2—S21	2.0004 (6)
C4—C5	1.419 (2)	C211—C216	1.384 (3)
C4—H4	0.9500	C211—C212	1.390 (3)
С5—Н5	0.9500	C212—C213	1.390 (3)
C6—C7	1.398 (3)	C212—H212	0.9500
C6—C10	1.405 (3)	C213—C214	1.382 (3)
С6—Н6	0.9500	C213—H213	0.9500
C7—C8	1.422 (4)	C214—C215	1.374 (3)
С7—Н7	0.9500	C214—H214	0.9500
С8—С9	1.399 (4)	C215—C216	1.388 (3)
С8—Н8	0.9500	C215—H215	0.9500
C9—C10	1.404 (3)	C216—H216	0.9500
С9—Н9	0.9500	C221—C226	1.385 (3)
С10—Н10	0.9500	C221—C222	1.394 (3)
C21—H21A	0.9900	C222—C223	1.388 (3)

C21—H21B	0.9900	C222—H222	0.9500
С22—Н22А	0.9800	C223—C224	1.380(3)
C22—H22B	0.9800	С223—Н223	0.9500
С22—Н22С	0.9800	C224—C225	1.379 (3)
С23—Н23А	0.9800	C224—H224	0.9500
С23—Н23В	0.9800	C225—C226	1.388 (3)
С23—Н23С	0.9800	С225—Н225	0.9500
C111—C112	1.396 (2)	С226—Н226	0.9500
C111—C116	1.398 (2)		
C2—Fe1—C1	41.73 (6)	C10—C9—Fe1	69.96 (12)
C2—Fe1—C3	41.28 (7)	С8—С9—Н9	126.1
C1—Fe1—C3	69.34 (7)	С10—С9—Н9	126.1
C2—Fe1—C9	143.50 (9)	Fe1—C9—H9	125.3
C1—Fe1—C9	172.17 (9)	C9—C10—C6	108.7 (2)
C3—Fe1—C9	111.40 (9)	C9—C10—Fe1	69.74 (13)
C2—Fe1—C10	112.82 (8)	C6-C10-Fe1	70.40 (12)
C1—Fe1—C10	147.52 (8)	C9—C10—H10	125.6
C3—Fe1—C10	105.12 (9)	C6-C10-H10	125.6
C9—Fe1—C10	40.31 (10)	Fe1—C10—H10	125.8
C2—Fe1—C8	174.18 (10)	C2-C21-N1	112.54 (14)
C1—Fe1—C8	135.46 (10)	C2-C21-H21A	109.1
C_3 —Fe1—C8	144.53 (10)	N1—C21—H21A	109.1
C9—Fe1—C8	40 11 (11)	C2-C21-H21B	109.1
C10—Fe1—C8	67 38 (10)	N1-C21-H21B	109.1
C^2 —Fe1—C7	133 57 (9)	H21A—C21—H21B	107.8
C1—Fe1—C7	112.83 (8)	N1—C22—H22A	109.5
C_3 —Fe1—C7	169 60 (9)	N1-C22-H22B	109.5
C9—Fe1—C7	67 94 (10)	H22A-C22-H22B	109.5
C10—Fe1—C7	67 32 (10)	N1-C22-H22C	109.5
C8—Fe1—C7	40.72 (11)	$H_{22}^{2} = H_{22}^{2} = H_{$	109.5
C_2 —Fe1—C6	108 42 (8)	H22B-C22-H22C	109.5
C1—Fe1—C6	118 04 (8)	N1—C23—H23A	109.5
C_3 —Fe1—C6	129 75 (9)	N1—C23—H23B	109.5
C9—Fe1—C6	67 90 (9)	H23A—C23—H23B	109.5
C10—Fe1—C6	40.19 (9)	N1—C23—H23C	109.5
C8—Fe1—C6	67.73 (10)	H23A—C23—H23C	109.5
C7—Fe1—C6	39.91 (10)	H_{23B} C_{23} H_{23C}	109.5
C^2 —Fe1—C5	69 49 (7)	C112-C111-C116	119 31 (17)
C1—Fe1—C5	41 12 (7)	C112—C111—P1	119.92 (13)
C_3 —Fe1—C5	68 49 (7)	C116—C111—P1	120.64(13)
C9—Fe1—C5	131 32 (9)	C113—C112—C111	120.01(12) 120.24(17)
C10—Fe1—C5	168 16 (8)	C113—C112—H112	119.9
C8—Fe1—C5	111 59 (9)	C111—C112—H112	119.9
C7—Fe1—C5	120.23 (9)	C114—C113—C112	119.92 (18)
C6—Fe1—C5	151.38 (8)	C114—C113—H113	120.0
C2—Fe1—C4	69.14 (7)	C112—C113—H113	120.0
C1—Fe1—C4	68.87 (7)	C113—C114—C115	120.27 (18)
C3—Fe1—C4	40.56 (7)	C113—C114—H114	119.9

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—Fe1—C4	106.34 (9)	C115—C114—H114	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—Fe1—C4	128.44 (9)	C116—C115—C114	120.12 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—Fe1—C4	115.60 (9)	C116—C115—H115	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—Fe1—C4	149.79 (9)	C114—C115—H115	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—Fe1—C4	167.51 (9)	C115—C116—C111	120.11 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—Fe1—C4	40.42 (7)	C115—C116—H116	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—P1—C111	102.03 (8)	C111—C116—H116	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—P1—C121	104.60 (8)	C122—C121—C126	119.11 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C111—P1—C121	108.68 (8)	C122—C121—P1	123.04 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—P1—S1	115.51 (6)	C126—C121—P1	117.85 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C111—P1—S1	113.07 (6)	C121—C122—C123	119.84 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C121—P1—S1	112.11 (6)	C121—C122—H122	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—N1—C22	111.15 (15)	C123—C122—H122	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—N1—C21	113.45 (13)	C124—C123—C122	120.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—N1—C21	110.67 (14)	C124—C123—H123	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—N1—H1	105.4 (14)	C122—C123—H123	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—N1—H1	108.3 (14)	C125—C124—C123	120.03 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—N1—H1	107.5 (14)	C125—C124—H124	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C1-C2	107.49 (14)	C123—C124—H124	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C1-P1	125.37 (13)	C124 - C125 - C126	120.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-P1	126.99 (12)	C124—C125—H125	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C1-Fe1	70.16 (10)	C126—C125—H125	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-Fe1	68.65 (9)	C125 - C126 - C121	120.50 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1—C1—Fe1	129 96 (9)	C125 - C126 - H126	1197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 - C_2 - C_1$	107.29 (14)	C121 - C126 - H126	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} $-C_{2}$ $-C_{21}$	125.22 (15)	$C_{221} = P_{2} = C_{211}$	103.57 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C21	127.46 (15)	C221 - P2 - S22	109.33 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C2-Fel	69.87 (10)	$C_{211} = P_{2} = S_{22}$	109.33(0) 109.40(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-Fel	69.63 (9)	C221 - P2 - S21	108.27 (6)
C1C2C2108.61 (15)S22-P2-S21107.78 (3)C4-C3-Fe170.43 (10)C216-C211-C212119.37 (18)C2-C3-Fe168.85 (10)C216-C211-P2120.67 (15)C4-C3-H3125.7C212-C211-P2119.88 (15)C2-C3-H3125.7C213-C212-C211119.8 (2)Fe1-C3-H3126.6C213-C212-H212120.1C3-C4-C5108.46 (15)C214-C213-C212120.1C3-C4-Fe169.01 (10)C214-C213-C212120.2 (2)C5-C4-Fe169.80 (10)C214-C213-H213119.9C3-C4-H4125.8C212-C213-H213119.9C5-C4-H4125.8C215-C214-H214119.9C4-C5-C1108.15 (15)C213-C212-H214119.9C4-C5-Fe169.79 (11)C214-C215-C216119.8 (2)C1-C5-Fe168.72 (10)C214-C215-H215120.1C4-C5-H5125.9C216-C215-H215120.1C4-C5-H5125.9C216-C215-H215120.6 (2)Fe1-C5-H5127.1C216-C215-H216119.7C7-C6-C10107.7 (2)C215-C216-H216119.7	C_{21} C_{2} F_{e1}	124 22 (12)	$C_{211} = P_{2} = S_{21}$	107.77 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C3-C2	108.61(15)	S22—P2—S21	117 58 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—Fe1	70.43 (10)	$C_{216} - C_{211} - C_{212}$	119.37 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C3-Fe1	68.85 (10)	$C_{216} - C_{211} - P_{2}$	120.67 (15)
C1C2C3C1C2C1C1C1C1C2C3H3125.7C2C2C21119.8 (2)Fe1C3H3126.6C2C212120.1C3C4C5108.46 (15)C211C2120.1C3C4Fe169.01 (10)C214C213120.2 (2)C5C4Fe169.80 (10)C214C213119.9C3C4H4125.8C2C2120.2 (2)Fe1C4H4125.8C215C2120.2 (2)Fe1C4H4127.0C215120.2 (2)Fe1C4H4127.0C215120.2 (2)Fe1C4H4127.0C213120.2 (2)Fe1C4H4127.0C213120.2 (2)Fe1C4C5Fe169.79 (11)C214119.9C4C5Fe169.79 (11)C214119.9C4C5Fe168.72 (10)C214C215C1C5Fe168.72 (10)C214C215C4C5H5125.9C216119.7C4C5H5125.9C216120.1C4C5H5127.1C216119.7C7C6H5127.1C21	C4—C3—H3	125.7	$C_{212} - C_{211} - P_{2}$	119.88 (15)
G21 - G3 - H3 126.6 $C213 - C212 - H212$ 120.1 $C3 - C4 - C5$ $108.46 (15)$ $C211 - C212 - H212$ 120.1 $C3 - C4 - Fe1$ $69.01 (10)$ $C214 - C213 - C212$ $120.2 (2)$ $C5 - C4 - Fe1$ $69.80 (10)$ $C214 - C213 - H213$ 119.9 $C3 - C4 - H4$ 125.8 $C212 - C213 - H213$ 119.9 $C5 - C4 - H4$ 125.8 $C215 - C214 - C213$ $120.2 (2)$ $Fe1 - C4 - H4$ 127.0 $C215 - C214 - C213$ $120.2 (2)$ $Fe1 - C4 - H4$ 127.0 $C213 - C214 - H214$ 119.9 $C4 - C5 - C1$ $108.15 (15)$ $C213 - C214 - H214$ 119.9 $C4 - C5 - Fe1$ $69.79 (11)$ $C214 - C215 - C216$ $119.8 (2)$ $C1 - C5 - Fe1$ $68.72 (10)$ $C214 - C215 - H215$ 120.1 $C4 - C5 - H5$ 125.9 $C216 - C215 - H215$ 120.1 $C4 - C5 - H5$ 125.9 $C216 - C215 - H215$ 120.1 $C4 - C5 - H5$ 125.9 $C216 - C215 - H215$ $120.6 (2)$ $Fe1 - C5 - H5$ 127.1 $C211 - C216 - H216$ 119.7 $C7 - C6 - C10$ $107.7 (2)$ $C215 - C216 - H216$ 119.7	C2-C3-H3	125.7	C_{213} C_{212} C_{211}	119.8 (2)
C3-C4-C5108.46 (15)C211-C212-H212120.1C3-C4-Fe169.01 (10)C214-C213-C212120.2 (2)C5-C4-Fe169.80 (10)C214-C213-H213119.9C3-C4-H4125.8C212-C213-H213119.9C5-C4-H4125.8C215-C214-C213120.2 (2)Fe1-C4-H4127.0C215-C214-H214119.9C4-C5-C1108.15 (15)C213-C214-H214119.9C4-C5-Fe169.79 (11)C214-C215-C216119.8 (2)C1-C5-Fe168.72 (10)C214-C215-H215120.1C4-C5-H5125.9C216-C215-H215120.1C1-C5-H5125.9C211-C216-H216119.7C7-C6-C10107.7 (2)C215-C216-H216119.7	Fe1—C3—H3	126.6	C213—C212—H212	120.1
C3-C4-Fe1 $69.01 (10)$ $C214-C213-C212$ $120.2 (2)$ C5-C4-Fe1 $69.80 (10)$ $C214-C213-H213$ 119.9 C3-C4-H4 125.8 $C212-C213-H213$ 119.9 C5-C4-H4 125.8 $C215-C214-C213$ $120.2 (2)$ Fe1-C4-H4 127.0 $C215-C214-H214$ 119.9 C4-C5-C1 $108.15 (15)$ $C213-C214-H214$ 119.9 C4-C5-Fe1 $69.79 (11)$ $C214-C215-C216$ $119.8 (2)$ C1-C5-Fe1 $68.72 (10)$ $C214-C215-H215$ 120.1 C4-C5-H5 125.9 $C216-C215-H215$ 120.1 C1-C5-H5 125.9 $C211-C216-C215$ $120.6 (2)$ Fe1-C5-H5 127.1 $C211-C216-H216$ 119.7 C7-C6-C10 $107.7 (2)$ $C215-C216-H216$ 119.7	C3—C4—C5	108.46 (15)	C211—C212—H212	120.1
C5 - C4 - Fe169.80 (10)C214 - C213 - H213119.9C3 - C4 - H4125.8C212 - C213 - H213119.9C5 - C4 - H4125.8C215 - C214 - C213120.2 (2)Fe1 - C4 - H4127.0C215 - C214 - H214119.9C4 - C5 - C1108.15 (15)C213 - C214 - H214119.9C4 - C5 - Fe169.79 (11)C214 - C215 - C216119.8 (2)C1 - C5 - Fe168.72 (10)C214 - C215 - H215120.1C4 - C5 - H5125.9C216 - C215 - H215120.1C4 - C5 - H5125.9C216 - C215 - H215120.6 (2)Fe1 - C5 - H5127.1C211 - C216 - H216119.7C7 - C6 - C10107.7 (2)C215 - C216 - H216119.7	C3—C4—Fe1	69.01 (10)	$C_{214} - C_{213} - C_{212}$	120.2(2)
C3 $-C4 - H4$ 125.8C212 $-C213 - H213$ 119.9C5 $-C4 - H4$ 125.8C215 $-C214 - C213$ 120.2 (2)Fe1 $-C4 - H4$ 127.0C215 $-C214 - H214$ 119.9C4 $-C5 - C1$ 108.15 (15)C213 $-C214 - H214$ 119.9C4 $-C5 - Fe1$ 69.79 (11)C214 $-C215 - C216$ 119.8 (2)C1 $-C5 - Fe1$ 68.72 (10)C214 $-C215 - H215$ 120.1C4 $-C5 - H5$ 125.9C216 $-C215 - H215$ 120.1C4 $-C5 - H5$ 125.9C216 $-C215 - H215$ 120.6 (2)Fe1 $-C5 - H5$ 127.1C211 $-C216 - H216$ 119.7C7 $-C6 - C10$ 107.7 (2)C215 $-C216 - H216$ 119.7	C5-C4-Fel	69 80 (10)	C_{214} C_{213} H_{213}	119.9
C5 - C4 - H4125.8C215 - C214 - C213120.2 (2)Fe1 - C4 - H4127.0C215 - C214 - H214119.9C4 - C5 - C1108.15 (15)C213 - C214 - H214119.9C4 - C5 - Fe169.79 (11)C214 - C215 - C216119.8 (2)C1 - C5 - Fe168.72 (10)C214 - C215 - H215120.1C4 - C5 - H5125.9C216 - C215 - H215120.1C4 - C5 - H5125.9C216 - C215 - H215120.1C4 - C5 - H5125.9C216 - C215 - H215120.6 (2)Fe1 - C5 - H5127.1C211 - C216 - H216119.7C7 - C6 - C10107.7 (2)C215 - C216 - H216119.7	C3—C4—H4	125.8	C_{212} C_{213} H_{213}	119.9
Fe1—C4—H4127.0C215—C214—H214119.9C4—C5—C1108.15 (15)C213—C214—H214119.9C4—C5—Fe1 $69.79 (11)$ C214—C215—C216119.8 (2)C1—C5—Fe1 $68.72 (10)$ C214—C215—H215120.1C4—C5—H5125.9C216—C215—H215120.1C1—C5—H5125.9C211—C216—C215120.6 (2)Fe1—C5—H5127.1C211—C216—H216119.7C7—C6—C10107.7 (2)C215—C216—H216119.7	C5—C4—H4	125.8	$C_{215} - C_{214} - C_{213}$	120.2 (2)
C4C5C112.1.0C215C214H214119.9C4C5Fe1 $69.79 (11)$ C214C215C216119.8 (2)C1C5Fe1 $68.72 (10)$ C214C215H215120.1C4C5H5125.9C216C215H215120.1C1C5H5125.9C216C215H20.6 (2)Fe1C5H5127.1C211C216H216119.7C7C6C10107.7 (2)C215C216H216119.7	Fe1—C4—H4	127.0	$C_{215} - C_{214} - H_{214}$	119.9
C4—C5—Fe1 $69.79 (11)$ $C214$ —C215—C216 $119.8 (2)$ C1—C5—Fe1 $68.72 (10)$ $C214$ —C215—H215 120.1 C4—C5—H5 125.9 $C216$ —C215—H215 120.1 C1—C5—H5 125.9 $C211$ —C216—C215 $120.6 (2)$ Fe1—C5—H5 127.1 $C211$ —C216—H216 119.7 C7—C6—C10 $107.7 (2)$ $C215$ —C216—H216 119.7	C4—C5—C1	108.15 (15)	C_{213} C_{214} H_{214}	119.9
C1—C5—Fe1 $68.72 (10)$ C214—C215—H215120.1C4—C5—H5125.9C216—C215—H215120.1C1—C5—H5125.9C211—C216—C215120.6 (2)Fe1—C5—H5127.1C211—C216—H216119.7C7—C6—C10107.7 (2)C215—C216—H216119.7	C4—C5—Fe1	69.79 (11)	C_{214} C_{215} C_{216}	119.8 (2)
C4—C5—H5125.9C216—C215—H215120.1C1—C5—H5125.9C211—C216—C215120.6 (2)Fe1—C5—H5127.1C211—C216—H216119.7C7—C6—C10107.7 (2)C215—C216—H216119.7	C1-C5-Fe1	68.72 (10)	C214—C215—H215	120.1
C1—C5—H5 125.9 C211—C216—C215 120.6 (2) Fe1—C5—H5 127.1 C211—C216—H216 119.7 C7—C6—C10 107.7 (2) C215—C216—H216 119.7	C4—C5—H5	125.9	C216—C215—H215	120.1
Fe1—C5—H5 127.1 $C211-C216-H216$ 119.7 C7—C6—C10 107.7 (2) $C215-C216-H216$ 119.7	C1—C5—H5	125.9	C_{211} C_{216} C_{215}	120.6 (2)
C7-C6-C10 107.7 (2) $C215-C216-H216$ 119.7	Fe1—C5—H5	127.1	C211—C216—H216	119.7
	C7—C6—C10	107.7 (2)	C215—C216—H216	119.7

C7—C6—Fe1	69.75 (13)	C226—C221—C222	119.09 (17)
C10—C6—Fe1	69.42 (12)	C226—C221—P2	120.61 (14)
С7—С6—Н6	126.2	C222—C221—P2	120.22 (14)
С10—С6—Н6	126.2	C223—C222—C221	120.29 (19)
Fe1—C6—H6	126.2	С223—С222—Н222	119.9
C6—C7—C8	108.0 (2)	C221—C222—H222	119.9
C6—C7—Fe1	70.33 (12)	C224—C223—C222	120.08 (19)
C8—C7—Fe1	69.55 (13)	C224—C223—H223	120.0
С6—С7—Н7	126.0	С222—С223—Н223	120.0
С8—С7—Н7	126.0	C225—C224—C223	119.96 (19)
Fe1—C7—H7	125.7	C225—C224—H224	120.0
C9—C8—C7	107.9 (2)	C223—C224—H224	120.0
C9—C8—Fe1	69.72 (13)	C224—C225—C226	120.3 (2)
C7—C8—Fe1	69.73 (12)	С224—С225—Н225	119.9
С9—С8—Н8	126.1	С226—С225—Н225	119.9
С7—С8—Н8	126.1	C221—C226—C225	120.31 (19)
Fe1—C8—H8	126.1	С221—С226—Н226	119.8
C8—C9—C10	107.8 (2)	С225—С226—Н226	119.8
C8—C9—Fe1	70.17 (13)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C111–C116 and C221–C226 phenyl rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…S21	0.85 (2)	2.34 (2)	3.1516 (15)	160.3 (19)
C21—H21 <i>B</i> ···S1	0.99	2.87	3.664 (2)	137
C22—H22 C ··· $Cg2^{i}$	0.99	2.75	3.621 (3)	149
C23—H23 <i>A</i> ··· <i>Cg</i> 1	0.99	2.75	3.483 (2)	132

Symmetry code: (i) -x+2, -y+1, -z+2.